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Abstract

There has been considerable work in AI on planning under
uncertainty. But this work generally assumes an extremely
simple model of action that does not consider continuous time
and resources. These assumptions are not reasonable for a
Mars rover, which must cope with uncertainty about the du-
ration of tasks, the power required, the data storage necessary,
along with its position and orientation.
In this paper, we outline an approach to generating contin-
gency plans when the sources of uncertainty involve contin-
uous quantities such as time and resources. The approach
involves first constructing a “seed” plan, and then incremen-
tally adding contingent branches to this plan in order to im-
prove utility. The challenge is to figure out the best places
to insert contingency branches. This requires an estimate of
how much utility could be gained by building a contingent
branch at any given place in the seed plan. Computing this
utility exactly is intractable, but we outline an approximation
method that back propagates utility distributions through a
graph structure similar to that of a plan graph.

1 Introduction
For a Mars rover, daily operation is rife with uncertainty.
There is inherent uncertainty about the duration of tasks, the
power required, the data storage necessary, position and ori-
entation, and environmental factors such as soil characteris-
tics, dust on the solar panels, ambient temperature, etc. For
example, in driving from one location to another, the amount
of time required depends on wheel slippage and sinkage,
which varies depending on slope, terrain roughness, and
soil characteristics. All of these factors also influence the
amount of power that is consumed. The amount of energy
collected by the solar panels during a traverse depends on
the length of the traverse, but also on the angle of the solar
panels. This is dictated by the slope and roughness of the
terrain.

Since rover operations are often highly constrained by
time and power constraints, plans that do not take this un-
certainty into account often fail miserably. Based on the
telemetry logs, we estimate that the Mars Pathfinder rover
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spent a substantial amount of its life doing nothing because
of either plan failure or conservative action sequences con-
structed to avoid any possibility of plan failure. One way
to attack this problem is to do on-board replanning when
failures occur. While this capability is certainly desirable,
there are several difficulties with exclusive reliance on this
approach:


 Rovers have severely limited computational resources
due to power limitations and radiation hardening require-
ments. As a result, it is not always feasible to do timely
or significant onboard replanning.


 Many actions are potentially risky and require pre-
approval by mission operations personnel. Because of the
cost and difficulty of communication, the rover receives
infrequent command uplinks (typically one per day). As
a result, each daily plan must be constructed and checked
for safety well in advance.


 Some contingencies require anticipation; e.g., switching
to a backup system may require that the backup system
be warmed up in advance. For time critical operations
there is insufficient time to perform these setup operations
once the contingency has occurred, no matter how fast the
planning can be done.

For these reasons, it is sometimes necessary to plan in
advance for potential contingencies; that is, anticipate unex-
pected outcomes and events and plan for them in advance. In
this paper we will be concerned with ground-based contin-
gency planning for rovers. More precisely, the problem is to
produce a (concurrent) plan with maximal expected utility,
given the following domain information:


 A set of possible goals that may be achievable, each of
which has a value or reward associated with it.


 A set of initial conditions, which may involve uncer-
tainty about continuous quantities like temperature, en-
ergy available, solar flux, and position. This uncertainty
is characterized by probability distributions over the pos-
sible values.


 A set of possible actions, each of which is characterized
by:

– a set of conditions that must be true before the action
can be performed. (These may include metric temporal



constraints and constraints on resource availability.)

– an uncertain duration characterized by a probability
distribution.

– a set of certain and uncertain effects that describe the
world following the action. Uncertain effects on con-
tinuous variables are characterized by probability dis-
tributions.

Contingency planning is already known to be quite hard
both in theory [28] and in practice. However, there are some
characteristics of this domain, which make this planning
problem different and even more difficult:

Time - actions take differing amounts of time and concur-
rency is often necessary.

Continuous outcomes - most of the uncertainty is associ-
ated with continuous quantities like time and power. In
other words, actions do not have a small number of dis-
crete outcomes.

Problem size - a typical daily plan for a rover will involve
on the order of a hundred actions.

As a result of these characteristics, it is not clear how to
apply previous approaches to planning under uncertainty to
this problem. In this paper, we outline a much different ap-
proach to this problem. At the top level, the approach in-
volves 1) constructing a “seed” plan, and 2) incrementally
adding contingent branches to this plan in order to improve
utility. The challenge is to figure out the best places to insert
contingency branches. In general, this requires an estimate
of how much utility could be gained by building a contin-
gent branch at any given place in the seed plan. Computing
this utility exactly is intractable, but we outline an approx-
imation method that involves back propagating utility dis-
tributions through a graph structure similar to that of a plan
graph. In Section 2 we discuss Just-in-Case Planning, our
incremental approach to contingency planning based on the
Just-in-Case Scheduling work of Drummond, et al[16].We
also argue that for planning, probability of failure is not a
good heuristic for choosing branch points. In Section 3 we
describe our plan graph method for estimating branch utility
curves.

2 Just-In-Case Planning
In the classical approach to contingency planning, each time
an action with uncertain outcomes is added to a plan, the
planner attempts to establish the goals for each different
outcome of the action. Unless there are only a few dis-
crete sources of uncertainty in a domain, this approach is
completely impractical. For more complex domains, it is
critical that the planner focus on those contingencies that
will make a large difference in the overall value of the plan.
To do this, we build upon the Just-In-Case( JIC) scheduling
technique[16], that was initially developed for contingency
scheduling of automated observatories. The basic idea in the
JIC approach is to take a seed schedule, look for the place
where it is most likely to fail, and augment the schedule with
a contingent branch at that point. The process is repeated un-
til the resulting contingent schedule is sufficiently robust, or

until available time is exhausted. This process is illustrated
in Figure 1.

Conceptually, it seems straightforward to apply the JIC
approach to planning problems. Using a conventional plan-
ner, we first generate a seed plan assuming the expected be-
havior of each activity; in other words, we reason as if ev-
ery action uses the expected amount of time and resources.
This is the same approach taken in JIC scheduling. As with
JIC scheduling, we then choose a place to insert a contin-
gency branch. Once again, using a conventional planner, we
generate a plan for the contingency branch and add it to the
existing plan. 1

2.1 The JIC Branch Heuristic

For JIC planning, the tricky part is deciding where to in-
sert contingency branches, and what the branch conditions
should be. In Drummond et al.’s original implementation
for automatic telescope scheduling, branches are added at
the points with the greatest probability of failure. Given the
distributions for time and resource usage this is relatively
easy to calculate by statistical simulation of the plan. Un-
fortunately, the points most likely to fail are not necessarily
good points for contingent branches. Consider the example
in Figure 2 where we have a seed plan with two actions, ���
and ��� , leading to a goal � that has positive value. Initially
we have 20 units of some resource (say power) and each of
the actions consumes somewhere between 5 and 15 units of
the resource. Clearly, this plan is most likely to fail after (or
during) action ��� . However, if the plan fails after (or dur-
ing) action ��� , there will not be any resources left. If all
the alternative activities require some of this resource, then
there is clearly no point in putting a contingent branch after
��� .

Fundamentally, the problem is that in order to select the
best place to insert a branch, we need to know whether or
not it is possible to accomplish anything useful at the points
under consideration. More precisely, we need to know how
much utility could be gained by inserting a branch at each
given point. In order to do this, we need to know the value
function of the mainline plan and of each possible branch.
The value function gives the expected future reward (utility)
at each step of a plan, as a function of the resource levels.

Computing the value function for a completed plan (such
as the seed plan) is relatively straightforward. It may be done
analytically if the resource consumptions for activities are
simple distributions. However, more typically, Monte Carlo
simulation is required [3, 44]. Similarly, it is easy to get
an estimate of the probability distribution over resources at
each step of a plan. A crucial piece of information is then the
value function of the best branch plan that can be added at
each point in the existing plan. If we had this information,
we could easily determine the optimal branch point in the
plan. We would just have to compare the relative gain in
utility obtained by considering the best possible branch plan

1Just as with JIC scheduling, this process is not guaranteed to
converge to an optimal contingent plan. However, JIC will always
monotonically improve a plan until a local optimum is reached.



1. Generate a seed schedule

2. Identify most likely failure

3. Generate a contingency branch

4. Insert the branch

Figure 1: The JIC approach.
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Figure 2: Example showing that the place where the plan is most likely to fail may not be the best branch point.

at each point and pick the branch point where this gain is
maximal.

Our extended JIC algorithm finds the best branch point us-
ing the following approach. For each possible branch point
in the current plan:

1. Calculate the value function (as a function of available
resources) of the remaining plan as well as the probabil-
ity distribution of resource availability at that point (using
Monte Carlo simulation).

2. Estimate the value function of the best branch that can be
added to the plan at this point, using the procedure de-
scribed in Section 3. This procedure also partitions the
value function for a branch according to the set of goals
contributing to the expected value; we can thus determine
the set of goals responsible for the branch’s estimated
value.

3. Calculate the net utility gain for adding the best branch
plan, as described in Section 3.6. The best overall branch
point is the one with the maximum net utility gain. The
branch condition is the condition that defines the region
where the value function of the branch is greater than that
of the current plan.

We generate the contingency branch using the same plan-
ner as for the seed plan, setting the initial conditions equal to
the branch condition, and providing the set of goals pursued
by the optimal branch. Note that the steps for estimating the
value of a branch do not actually construct the branch plan.

Unfortunately, there is no easy way to calculate the exact
value function for the best possible branch plan at a given
point; that would require actually doing the planning for the
branch. Instead we must approximate this value function.
In the next section, we present a procedure designed to esti-
mate the value function of the best possible branch plan that
could be generated at each point, without actually doing the
planning.

3 Estimation of Branch Utility
A critical part of our algorithm is to compute an estimate
of the value function of possible branch plans, at each can-

didate branch-point of the mainline plan. It is based on a
representation of the planning problem as a plan graph [4].
Graphplan is a classical planning algorithm that first per-
forms a reachability analysis by constructing a plan graph,
and then performs goal regression within this graph to find a
plan. Our approach retains only the first of these stages, the
plan graph construction. We then perform back-propagation
of utility tables in the graph to produce estimates of utility
functions (instead of plans). This section provides an outline
of this mechanism.

3.1 The Plan Graph
The plan graph is a sequential graph that alternates propo-
sitional (fluent) levels and action levels. Each propositional
level contains the set of propositions that can be made true at
that level, and a set of mutual exclusion (mutex) constraints
between pairs of these propositions. A mutex between two
fluents indicates that these propositions cannot both be true
at the same time at this level of the graph. The first proposi-
tional level contains all the fluents that are true in the initial
state of the problem (initial conditions). The action levels
contain all the actions that can be applied given the previous
propositional level. Each action has an arc from each fluent
that it consumes and an arc to each fluent it produces.

Figure 3 shows a part of the plan graph obtained in a sim-
ple example where the only continuous variable is power. In
this problem, the mainline plan (shown in bold) consists of
two actions: � which takes the fluent � as precondition and
produces � and � , and � which has � as precondition and� as effect. The fluent � represents a goal that provides a
reward (utility) of 5. For actions � and � , the expected con-
sumption is 10 Ah, and they can be started only if the current
level of resource is at least 15 Ah. Three other actions, � , � ,
and � , are available in the domain, but they are not included
in the mainline plan. The fluent �
	 represents a secondary
goal with utility 1. Finally, both � and � are true and all the
other fluents are false in the initial conditions. There are two
points of the mainline plan that are candidate branch points:
at the beginning of the plan, and between � and � . The lat-
ter is characterized by the following set of propositions: � , � ,
� and � (all other fluents being false). Our goal is to estimate
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Figure 3: An example of plan graph (partial). The two numbers below each action represent, first, its expected consumption,
and second, the minimum power required to be allowed to start this action.

the best utility gain we can get by branching at these points.

3.2 Utility Table Back-propagation
The basic principle of our algorithm is to back-propagate
utility distribution tables in the plan graph back to the initial
state. Each table is attached to a single (action or proposi-
tion) node and contains a piecewise constant function giving
utility as a function of resource level � (e.g. energy). It rep-
resents an estimate of the expected reward we can get by
performing this action, or by having this fluent true, as a
function of current resource levels.

The process is initialized by creating utility tables for the
goals. In our example, we start with a table for � and an
expected return of 5 for positive resource levels (and 0 oth-
erwise), indicating that we obtain a reward of 5 if we can get
to � with some power remaining.

We then back-propagate this table in the plan graph, until
it has reached the initial conditions. First, a table is created
for action � , based on the table in � . Its utility function is
defined by:����� �	��
 �� ��� �����	�������� �����  � �"!$#�%'&$( �*) %+�-, (1)

where
���.� �/� and

� � � �	� are the (piecewise constant) utility
estimates encoded by the tables in � and � respectively. The
first line expresses the fact that we are not allowed to start �
if the current energy is at or below 15 Ah. The second says
that � consumes 10 Ah and leads to � , from where we can
get the reward encoded by

���
. Next, the table attached to �

is back-propagated to the previous propositional level. Since� has only one fluent, 0 , as precondition, the table in � is
copied as is in 0 . Similarly, we back-propagate the table at0 to 1 and to 2 . The resulting value function is

�435� �/�6
 �578� �/�9
 �: ��� �;��<=�������� ���><  �?�"!$#�%'&$( �*) %+� , (2)

3.3 Conjunctive Preconditions
The process described above—that is, regressing the goal �
down to fluent 2 —is relatively simple because there is no

action with multiple preconditions in the path. A more com-
plex situation arises when we try to regress �5@ to initial con-
ditions, since the tables must pass through action A , which
has multiple, conjunctive preconditions.

To deal with this type of situation, we add to each utility
table a condition, that is, a list of fluents such that the table is
valid if and only if all the fluents are true. The fluents in the
condition list of a table represent the set of goals that must
be achieved, together with the fluent (or action) carrying the
table, to get the utility encoded in the table. The condition
is used to remember what subgoals are still to be achieved
when we back-propagate a table.

In our example, we start by creating a utility table at �5@
with an empty condition and predicting a reward of 1 for
all ��B  . This table is then back-propagated to action A , as
shown in Figure 4. Since A has two fluents as preconditions,C and D , two copies of its table are created, one for each
fluent node. The value functions encoded by these tables
are both equal to the function of the table in A (

�FE"� �/�G
��HI� �/�J
 ��K�� �	� ). However, their conditions are different.
The condition of the table for C is L'DNM , while the condition
of the table for D is L C M . Both tables indicate that a utility of 1
may be obtained if we can get O and D at the same time with
a remaining energy of at least 2. However, they represent
different orderings of the two sub-goals: the table attached to
node C estimates the utility that can be gained by producing
first O and then C , and the table in node O considers subgoals
in the opposite order.

When a table reaches the beginning of the plan graph but
still has unsatisfied fluents in its condition, a copy of it is
posted at each node in the condition list that is not satisfied.
For instance, the table in D with L C M as condition is back-
propagated through action P to the O node. A copy of the
table is then posted at the C node, and C is deleted from its
condition list (which is now empty). This table predicts 0
reward if ��Q�R (the consumption of P plus the consumption
of A ), and 1 otherwise. It will in turn be back-propagated
to 2 by applying the consumption of action S to the table,
stopping here.

Similarly, the table in C obtained by regressing goal �5@
through action A can be back-propagated to the 2 node.
Since it has L'DNM as condition, it is then sent to the D node and
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Figure 4: Utility table propagation for conjunctive preconditions�
is deleted from its condition. Finally, it is back-propagated

through � to � , where it stops. We then have two tables with
empty conditions originating from ��� : one at � and one at � .
Both encode the same plan: ���
	��� , then � . However, they
represent different orderings of � and � .

In general, this process may lead to several tables attached
to the same node, since there may be several ways to support
a fluent. The total number of tables is limited by merging all
the tables that have the same condition at some node: they
are replaced by a single table that encodes the maximum of
all their value functions.

3.4 Conjunctive Effects
An interesting step of the back-propagation mechanism is
illustrated by action � in Figure 5. Since this action has two
effects, it will receive utility tables from both nodes.

Each time a table is back-propagated to � , we merge it
with all other tables at � . In our example, when we want
to back-propagate the table from � , we first test if the ta-
ble in � can be merged with it. The test is successful if and
only if the condition of the table for � implies that of the ta-
ble for � , which is not true. Therefore, the test fails and we
back-propagate the � table independently. However, when
we consider back-propagating the table for � , the test is suc-
cessful (since

�������������
) and we merge the two tables. The

table in � inherited from � has condition � ��� , and encodes
the value function defined by

 "! �$#% � &' (*) +-, #/.103254687%9;:  =< ��#?>@0 ) A	 "B ��#?>@0 ) DC E ��F��G��H +JI �LK (3)

The max operator in equations (3) and (4) represents the
opportunity to make different choices with different levels
of resource after executing � . It does not reflect the pos-
sibility to make choices during execution as a function of
the outcomes of previous actions. In fact, the utility table
back-propagation procedure works on a deterministic ap-
proximation of the problem: we suppose that each activity
consumes exactly its expected consumption, with probabil-
ity 1. Therefore, there is no uncertain outcome after exe-

cuting � . Rather, we evaluate the utility to come for dif-
ferent initial resource levels, and thus different intermediate
resource levels. The apparent choice due to the max in the
previous equation represents the opportunity to do different
things with different initial conditions. We are actually esti-
mating the value of an unconditional plan for each possible
starting condition.

3.5 Extracting Utility Estimates
Once the utility tables have been back-propagated down to
the fluents representing initial conditions of the problem, we
extract the utility estimates for the candidate branch points
from the graph. Consider the point between � and M , char-
acterized by the set of fluents ���N	��O	P�%	�� � . We build a single
utility table for this branch point by merging all utility tables
attached to � , � , � and � nodes whose condition is included
in ���Q	��O	P�%	�� � (that is, whose condition is true when we are
at the point between � and M ). This is all the tables that
represent utility apparently reachable when � , � , � and � are
true simultaneously. These tables are merged using the max
operator of equation (3). The resulting table is the value
function estimate that we need.

As shown in Figure 6, the calculation for the branch point
at the beginning of the mainline plan uses two tables (all
others being dominated):R the table attached to � with empty condition and showing

that a reward of 1 may be reach if 032S.T#VUTWX2 , and a
reward of 5 may be reached if #;YZW[2 ;R the table attached to � with ��� � as condition and showing
a reward of 1 may be obtained if #\Y^] (the sum of the
consumptions of � , � and � ).

The resulting table, which characterizes this branch point,
shows that no reward can be obtained from here if #S.T] ,
that a reward of 1 is available if ]*._#`UaW[2 , and that a
reward of 5 may be obtained if #;Y@W[2 .

Equation (3) corresponds to a pessimistic view where we
assume that we can never get the rewards of two different
goals in the same execution run. To deal with situations
where several goals are reachable, we use a more complex
operator that requires augmenting the utility tables. We add:
(i) the sum of the expected consumptions ( � ) of the actions
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performed to get the utility encoded by the table, and (ii) the
goals that are responsible for this utility. They both are a
function of the resource level � . These are piecewise con-
stant like the utility function.

In the case of action
�

, we have

����� ���
	
������ ������

����� ���������
�����

�� ��
�! "� �$#�� � �&%�!'"� �(#�� � #*)  "� �+#,� � �-�/.��'0� �(#�� � �&%�  � �(#�� � #*) ' � �+#,� � �-�

1 �2
�346587:9<;8= �?> 9A@

(4)

The first of the two alternatives represents performing
�

,
pursuing the goals beyond B , and then the goals beyond C .
The second alternative follows the same reasoning, but pur-
suing C then B . The information about the goals pursued is
used to avoid counting the same goal twice, which is a po-
tential flaw of the previous rule. If the goals pursued in the
two tables (for a given resource level) intersect, then we use
a simple max rule as in (3).

Using equation (4) instead of (3) to evaluate the initial
step of the mainline plan in our example, we would have
identified the possibility of reaching both D and DFE if there
are sufficient initial resources.

3.6 Using Utility Estimates
Given the utility estimates at the various branch points, we
can now use this information to select the branch point, the
branch condition and the set of goals to pursue. For a partic-
ular branch point, we compute the gain in area for the branch
utility estimate over the mainline utility. This represents the
net utility gain of the branch. The branch condition is com-
posed of the points where the utility curves cross. The goals
for the contingent branch correspond to the portion of the
utility estimate that is greater than the utility curve of the
mainline plan.

For example, in Figure 7, we show the mainline utility
curve and the branch estimate curve for a branch point. The
shaded area represents the utility gain for the branch. The
branch conditions are shown and the goal corresponding to
the utility gain is G3.

4 Related Work
4.1 Contingency Planning
There has been considerable work in AI on planning under
uncertainty. Table 1 classifies much of this work along the
following two dimensions:
Representation of uncertainty: whether uncertainty is mod-

eled strictly logically, using disjunctions, or is modeled
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numerically, with probabilities.

Observability assumptions: whether the uncertain out-
comes of actions are not observable, partially observable,
or fully observable.

Disjunction Probability
CGP [43]

Non CMBP [12, 1] Buridan [27]
Observable C-PLAN [11, 18] UDTPOP [35]

Fragplan [26]
SENSp [17] C-Buridan [15]

Cassandra [37] DTPOP [35]
Partially PUCCINI [19] C-MAXPLAN [29]

Observable SGP [48] ZANDER [29]
QBF-Plan [39] Mahinur [34]

GPT [7] POMDP [9]
MBP [2]

JIC [16]
Fully WARPLAN-C [47] Plinth [20]

Observable CNLP [36] Weaver [6]
PGP [5]
MDP [9]

Table 1: A classification of planners that deal with uncer-
tainty. Planners in the top row are often referred to as con-
formant planners, while those in the other two rows are often
referred to as contingency planners

There are a number of difficulties in attempting to apply
existing work on planning under uncertainty to spacecraft
or rovers. First of all, the work listed in Table 1 assumes
a very simple model of action in which concurrent actions
are not permitted, explicit time constraints are not allowed,
and actions are considered to be instantaneous. None of
these assumptions hold for typical spacecraft or rover op-
erations. These characteristics are not as much of an ob-
stacle for Partial-Order Planning frameworks such as SENSp
[17], PUCCINI [19], WARPLAN-C [47], CNLP [36], Buridan
[27], UDTPOP [35], C-Buridan [15], DTPOP [35], Mahinur

[34] and Weaver [6]. In theory, these systems could rep-
resent plans with concurrent actions and complex temporal
constraints. The requirements for a rich model of time and
action are more problematic for planning techniques that are
based on the MDP or POMDP representations, satisfiability
encodings, the graphplan representation, or state- space en-
codings. These techniques rely heavily on a discrete model
of time and action. (See [42] for a more detailed discussion
of this issue.) Although semi-Markov decision processes
(SMDPs) [38] and temporal MDPs (TMDP) [10] can be used
to represent actions with uncertain durations, they cannot
model concurrent actions with complex temporal dependen-
cies. The factorial MDP model has recently been developed
to allow concurrent actions in an MDP framework. However,
this model is limited to discrete time and state representa-
tions. Moreover, existing solution techniques are either too
general to be efficient on real-world problems (e.g. Singh
and Cohn [40]), or too domain-specific to be applicable to
the rover problem (e.g. Meuleau et al. [30]).

A second, and equally serious, problem with existing con-
tingency planning techniques is that they all assume that un-
certain actions have a small number of discrete outcomes.
To characterize where a rover could end up after a move
operation, we have to list all the different possible discrete
locations. We would need to do something similar to char-
acterize power usage. For most spacecraft and rover activi-
ties this kind of discrete representation is impractical since
most of the uncertainty involves continuous quantities, such
as the amount of time and power an activity requires. Action
outcomes are distributions over these continuous quantities.
There is some recent work using models with continuous
states and/or action outcomes in both the MDP [3, 31, 32, 41]
and POMDP [45] literature, but this has not yet been applied
to SMDPs and has primarily been applied to reinforcement
learning rather than planning problems.

A third problem with conventional contingency planning
technology is that it does not scale to larger problems. Part
of the problem is that most of the algorithms attempt to ac-
count for all possible contingencies. In effect, they try to
produce policies. For spacecraft and rover operations, this is
not realistic or tractable—a daily plan can involve on the or-
der of a hundred operations, many of which have uncertain
outcomes that can impact downstream actions. The result-
ing plans must also be simple enough that they can be un-
derstood by mission operators, and it must be feasible to do
detailed simulation and validation on them in a limited time
period. This means that a planner can only afford to plan
in advance for the “important” contingencies and must leave
the rest to run-time replanning. Of the planning systems in
table 1, only Just-In-Case ( JIC) contingency scheduling [16]
and Mahinur [34] exhibit a principled approach to choosing
what contingencies to focus on.

4.2 Utility Estimation

A number of authors working in probabilistic planning have
looked at the problem of estimating the utility of a plan.
Haddawy et al. [22, 21] have developed the DRIPS planner,
which attempts to optimize the utility of the plan it returns.



sc Drips differs from this work in that it represents uncer-
tainty about the utility of a plan as an interval, which allows
it to determine when one plan dominates another, taking into
account utility uncertainty rather than only expected util-
ity. However, DRIPS plans in a very restricted domain rep-
resented as an abstraction/decomposition network that con-
strains the plans that can be created. Comparing abstractions
of plans built using this network allows DRIPS to discard
plans without having to estimate the utility of a partial plan,
just as we do.

Another related system is Blythe’s Weaver [6]. Weaver
builds contingency plans in an incremental fashion very
similar to our appraoch, although it only considers actions
with discrete outcomes (and uncontrolled external actions).
Weaver is concerned with adding contingencies to increase
the probability of success of the plan, rather than the util-
ity. It translates the current plan into a Bayesian network to
compute the probability of success of the plan, and identifies
points where an action can lead to a failure as candidates for
new contingent branches. Unlike with our approach, it does
not need to estimate the value of the contingent branch be-
fore adding it because the discrete domain means that by ne-
cessity the new branch must handle an outcome that wasn’t
in the original plan.

4.3 Plangraph Heuristics
Haslum & Geffner [23], Nguyen et al. [33], and others
have described ways of using a plan graph to derive distance
heuristics for guiding planning search. Such heuristics are
now used in a wide variety of different planning systems,
including state space search planners such as HSP2 [8], FF
[24], and AltAlt [33], Graphplan-based systems [25], and
partial-order planning systems such as RePop [14] and VH-
POP [49]. Recently, Do [13] has reported on the use of plan
graphs for deriving more complex “cost functions”. These
cost functions are used to guide a planner in selecting actions
when both time and resource usage are important.

Our use of Plan Graphs is somewhat different than these
previous efforts. In particular, we are using the plan graph
to derive estimates of the utility that can be achieved from
different possible states (rather than estimates of the “dif-
ficulty” of achieving a particular goal from the initial con-
ditions). This allows us to make intelligent choices about
the goals to be achieved in a contingent branch. Because
we are dealing with uncertainty in resource availability, we
must also propagate utility functions through the plan graph,
rather than single numbers.

5 Discussion
5.1 Complexity
The problem of conditional planning is known to be very
difficult ( ��������	��
 [39], ��� [46]). Here, it is combined
with the problem of goal selection, which is intrinsically ex-
ponential in the size of the number of goals, since all subsets
of goals must be considered. Our algorithm avoids part of
the complexity of the problem by:
� incrementally adding contingency branches to the plan

(rather than considering sets of possible branches)

� using a plan graph based heuristic to select branch points
� using this heuristic to select goal sets for planning.

The computation of the heuristic information is expen-
sive, because of the complexity of propagating value tables
through the plan graph. However, this propagation only
needs to be done once for a particular problem, rather than
once for each possible branch point being considered. To
do this, we simply construct the plan graph for the entire
problem, and propagate all value tables and conditions back
to the intitial conditions. For a particular branch point, the
relevant tables are those associated with the conditions that
hold at the branch point. In other words, a branch point cor-
responds to a set of internal nodes and tables in the plan
graph.

5.2 Status and Future Work
We are currently implementing the techniques described in
this paper for a Mars Smart Lander Technology Demonstra-
tion Effort. To build seed plans and branch plans, we are
using the EUROPA planning system developed at NASA
Ames Research Center.

The incremental contingency planning algorithm that we
have described is not guaranteed to produce an optimal con-
tingency plan, because it makes greedy choices concern-
ing branch selection, branch condition, branch goals and
branch plan. In theory, we could make it complete by al-
lowing backtracking on all these choices. However, since a
branch condition involves continuous quantities, this would
be somewhat problematic.

Our approach of using a plan graph to estimate value func-
tions makes a number of assumptions and simplifications:
� We propagate expected values, rather than distributions

through the plan graph.
� we consider only a few of the many possible orderings

for achieving subgoals in the plan graph. (Order does not
matter unless there are time or resource constraints on the
execution of individual actions.)

� We ignore negative interactions (mutual exclusion) be-
tween actions in the plan graph.

� We ignore shared substructure between subgoals in the
plan graph

We are considering ways to relax some of these assump-
tions, but doing so increases the computational cost of the
heuristic. It is not yet clear how these assumptions will af-
fect the quality of the resulting contingency plans. It may
turn out that we are better off using the weaker heuristic pre-
sented here, and doing more search over the space of contin-
gency branches.

Finally, we are also considering a number of other difficult
issues such as:
� permitting sensory actions to consume time and re-

sources. (Here we made the MDP assumption that the
sensory information was always free and available.)

� allowing sensory information to be noisy
� allowing the possibility of inserting setup actions for con-

tingent branches prior to the actual branch point



It appears that all of these issues can be addressed in our
plan graph methods for computing utility tables, but it is
non-trivial to do so.
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